
JOURNAL OF AEROSPACE COMPUTING, INFORMATION, AND COMMUNICATION
Vol. 3, June 2006

Memory Management for Self-Stabilizing
Operating Systems∗

Shlomi Dolev and Reuven Yagel†

Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
{dolev,yagel}@cs.bgu.ac.il

This work presents several approaches for designing the memory management component
of self-stabilizing operating systems. We state the requirements a memory manager should
satisfy. One requirement is eventual memory hierarchy consistency among different copies of
data residing in different (level of) memory devices e.g., RAM and Disk.Another requirement is
stabilization preservation a condition in which the memory manager ensures that every process
that is proven to stabilize independently, stabilizes under the (self-stabilizing scheduler and)
memory manager operation too.Three memory managers that satisfy the above requirements
are presented. The first allocates the entire physical memory to a single process at every given
point in time. The second one uses fixed partition of memory between processes, while the
last one uses memory leases for dynamic memory allocations. The use of leases in the scope
of memory allocation in the operating system level is a new and important aspect of our
self-stabilizing memory management.

I. Introduction

THIS work presents new directions for building self-stabilizing memory management as a component of a self-
stabilizing operating system kernel. A system is self-stabilizing8,9 if it can be started in any possible state and

subsequently it converges to a desired behavior.A state of a system is an assignment of arbitrary values to the system’s
variables. The necessity of such a system in critical and remote systems cannot be over estimated. Entire years of
work can be wasted if the operating system of an expensive complicated device e.g., a spaceship, reaches an arbitrary
state due to say, soft errors (e.g.,16), and is lost forever.

An operating system kernel usually contains the basic mechanisms for managing hardware resources. The clas-
sical Von-Neumann machine includes a processor, a memory device and external i/o devices. In this architecture,
memory management is an important task of the operating system’s kernel. Our memory management uses the
primitive building blocks from11 where simple self-stabilizing process schedulers are presented. We also rely on,7

which addresses self-stabilization of the microprocessor. Thus, based on the idea of fair composition,9 once the
microprocessor stabilizes and starts fetching and executing instructions, the scheduler converges to a legal behavior,
in which other programs are executed infinitely often.

Memory management has influenced the development of computer architecture and operating systems.3 Various
memory organization schemes and appropriate requirements have been suggested throughout the years. In this
work, we are adding two important requirements, named the eventual memory hierarchy consistency requirement
and the stabilization preservation requirement. Since memory hierarchies and caching are key ideas in memory
management, the memory manager must eventually provide consistency of the various memory levels. Additionally,

Received 28 September 2005; revision received 3 February 2006; accepted for publication 11 April 2006. Copyright © 2006
by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper may be made for personal
or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood
Drive, Danvers, MA 01923; include the code 1542-9423/04 $10.00 in correspondence with the CCC.∗Partially supported by Rafael, IBM, NSF, Intel, Deutsche Telekom, Rita Altura Trust Chair in Computer Sciences and Lynn and
William Frankel Center for Computer Sciences.
†Also at: Rafael 3M, POB 2205, Haifa, Israel.

260

DOLEV AND YAGEL

once stabilization for a process is established, the fact that process and scope switching occurs and that memory is
actually shared with other processes, will not damage the stabilization property of the process. These requirements
are an addition to the usual efficiency concerns which operating systems must address. Usually, memory management
in operating systems is handled with the assistance of quite a complex state, for example page tables. A minor fault
in such a state can lead to writing wrong data onto the disk (violation of consistency) or even to corruption of some
process’ state (violation of preservation). Unless the system is self-stabilizing, the corruption of the tables may never
be corrected and the tables’ internal consistency may never be re-established.

We present three basic design solutions that, roughly speaking, follow the evolution of memory management
techniques. The first approach allocates the entire available memory to the running process, thus ensuring exclusion
of memory access. Since each process switch requires expensive disk operations, this method is inefficient. The
second solution partitions the memory between several running processes and exclusive access is achieved through
segmentation and stabilization of the segment partitioning algorithm. Both solutions constrain program referencing
to addresses in the physical memory only (or even in the partition size) and allow only static use of memory.

Following this, we present lease based dynamic schemes, in which the application must renew memory leases in
order to ensure the correct operation of a self-stabilizing garbage collector.

Demonstration implementations (which appear in the appendices) using the Intel Pentium processor architecture15

were composed. The implementations are written in assembly language and are directly assembled into the processor’s
opcode (in our experiments we have used the NASM open-source assembler20). The strategy we used for building
such critical systems was examining, with extra care, every instruction. This is achieved by writing the code directly
according to the machine semantics (not relying on current compilers to preserve our requirements), along with line
by line examination. This style is sometimes tedious, yet is essential for demonstrating the way one should ensure the
correctness of a program from any arbitrary initial state. Such a method is especially important when dealing with a
component as basic as an operating system kernel. Higher level components and applications can then be composed
using ways discussed in.1 The reader may choose to skip the implementation details. The Intel Pentium processor
contains various mechanisms which support the robust design of memory management like segmentation, paging
and ring protection. However, the complexity of the processor (partially due to previous processors’ compatibility
requirements) carries a risk of entering into undesirable states, and thereby causing undesirable execution. Our proof
and prototype show that it is possible to design a self-stabilizing memory manager that preserves the stabilization of
the running processes which is an important building block of an infrastructure for industrial self-stabilizing systems.
Previous work: Extensive theoretical research has been done towards self-stabilizing systems8,9,25 and recovery-
oriented/autonomic-computing/self-repair, e.g.,14,21,26 Fault tolerance properties of operating systems (e.g.,23),
including the memory management layer, were extensively studied as well. For example, in,4 important operat-
ing system memory regions are copied into a special area for fast recovery. The design of the Multics operating
system pioneered issues of data protection and sharing, see6 and22. The algorithms presented here enforce consis-
tency of the data structures used for memory management. In order to use more complex data structures, the work of13

is relevant for achieving general stabilization of data structures.10 addresses the issue of automatic detection and error
correction in common high-level operating system data structures (although, not in a self-stabilizing way). Leases
are commonly used as a general fault-tolerant locking mechanism (see,12,17). In,19 leases are used to automatically
remove subscriptions in publish-subscribe systems. However, none of the above suggest a design for an operating
system, or, in particular, memory management that can automatically recover from an arbitrary state (that may be
reached due to a combination of unexpected faults).
Paper organization: In the next section we define the system settings and requirements. The three solutions: total
swapping, fixed partition and dynamic memory allocation, are presented in Section III, Section IV and Section V,
respectively. Concluding remarks appear in Section VI and code snippets with explanations appear in the Appendix.

II. System Settings, Assumptions and Requirements
We start with a brief set of definitions related to states and state transitions (see7,11 for more details). The system

is modeled by a tuple 〈processor, memory, i/o connectors〉. The processor (or microprocessor) is defined by an
operation manual, e.g., Pentium.15 The processor state is defined by the contents of its internal memory (registers).

261

DOLEV AND YAGEL

The registers includes a program counter (pc) register and a processor status word (psw) register, while the
latter determines the current mode of operation. In particular, the psw contains a bit indicating whether interrupts
are enabled.
A clock tick triggers the microprocessor to execute a processor step psj = (s, i, s ′, o), where the inputs i and the
current state of the processor s are used for defining the next processor state s ′ and the outputs o. The inputs and
outputs of the processor are the values of its i/o connectors whenever a clock tick occurs. The processor uses the
i/o connectors values for communicating with other devices, mainly with the memory, via its data lines. In fact,
the processor can be viewed as a transition function defined by e.g.15 A processor execution PE = ps1, ps2, . . . is a
sequence of processor steps such that for every two successive steps in PE, psj = (s, i, s ′, o) and psj+1 = (s̄, ī, s̄ ′, ō)

it holds that s ′ = s̄.
The interrupt connector which is connected to external i/o devices, is used for signaling the processor about

(urgent) service requests. The NMI (Non-Maskable Interrupt) connector role is similar to the interrupt connector,
except that the NMI request is not masked by the interrupt flag. In the Pentium, whenever one NMI is handled, other
NMIs are ignored until an iret operation is executed.

The memory is composed of various devices (Fig. 1 presents some common memory hierarchy). Here we consider
main memory and secondary storage. The main memory is composed of ROM and RAM components. Read-only parts
are assumed non-volatile. The secondary storage is also organized as a combination of read-only parts, such as
CD-ROM and other disks. The read-only requirement is compulsory for ensuring correctness of the code. Otherwise,
the Byzantine fault model18 must be assumed. Processor caches, at least in the current Pentium design can not be
controlled directly by the operating system, and are not, therefore, considered here.
The i/o state is the value of the connectors connecting to peripheral devices. We assume that any information stored
in the interface cards for these devices is also part of the memory.

A system configuration is a processor state and the content of the system memory. A system execution E =
(c1, a1, c2, a2, . . .) is a sequence of alternating system configurations and system steps. A system step consists of a
processor step along with the effect of the step on the memory (and other non stateless devices, if those exist). Note
that the entire execution can be defined by the first configuration (for achieving self-stabilization usually assumed
arbitrary) and the external inputs at the clock ticks.
Additional necessary and sufficient hardware support: We assume that in every infinite processor execution, PE,
the processor executes fetch-decode-execute infinitely often. Moreover, the processor executes a fetched command
according to its specification, where the state of the processor, when the first fetch starts is arbitrary. (Means for
achieving such a behavior are presented in7).

We assume there is a watchdog device connected to the NMI connector which is guaranteed to periodically generate
a signal every predefined time. Watchdog devices are standard devices used in fault-tolerant systems e.g.,5, 11. We
have to design the watchdog to be self-stabilizing as well. The watchdog state is, in fact, a countdown register with a
maximal value equal to the desired interval time. Starting from any state of the watchdog, a signal will be triggered
within the desired interval time and no premature signal will be triggered thereafter. The watchdog guarantees
execution of a critical operating system code such as code refresh and consistency checks,11 as well as memory
management operations addressed in this work.

Fig. 1 A Common Memory Hierarchy.

262

DOLEV AND YAGEL

Fig. 2 System Transitions.

In order to guarantee that the processor will react to an NMI trigger, we suggest the addition of an internal
countdown register or NMI counter as part of the processor architecture. This NMI counter will be decremented in
every clock tick until it reaches zero. Whenever an NMI handler is executed (the processor can detect this according
to a predefined program counter value), the NMI counter is raised to its maximal value (chosen to be a fixed value
greater than the expected execution length of the NMI handler). The processor does not react to NMIs when the NMI

counter does not contain zero. In addition, the iret operation assigns zero to the NMI counter. Thus, we guarantee
that NMIs will eventually be handled from any processor state. In addition, while one NMI is handled, all other NMIs
will be masked. Eventually, however this masking will be discarded in order to allow the next NMI. We say that a
processor is in an NMI state whenever the NMI connector is set and the NMI counter contains 0, which means that the
next operation to be executed is the first operation of the NMI handler procedure‡.

A read only memory should be used for storing fixed values. Specifically, the ROM will contain at least the interrupt
table entry for the NMI and the NMI handler routine. This is needed in order to guarantee the execution of the NMI

interrupt handler which, in turn, will regain consistency.
Figure 2(a) illustrates the legal execution of the system. The system is composed of various processes all of which

execute in there turn. Additionally, there is a scheduler which is part of the NMI handler. The scheduler repeatedly
establishes its own consistency and also carries the process switch operation. It then validates the next process’ state
and sets the program counter so that the next chosen process will be executed. Due to a fault, the system may reach
any possible state, as seen in Fig. 2(b). However, due to the NMI trigger design, eventually the scheduler code will be
called and will establish the required behavior.
The error model: We assume that every bit of the system’s variables might change following some transient fault
(e.g., soft-error). We also assume that code portions are kept in read-only nonvolatile memories which can not be
corrupted (say, by means of hardwired ROM cheap) and, thus, are not part of the system’s state. We remark that a
corruption of the code may lead to an arbitrary (Byzantine) behavior!

The memory manager requirements include both the consistency and the stabilization preservation requirements:
Consistency: as the system executes, the memory manager keeps the memory hierarchy consistent (analogously to
the consistency requirement for non-stabilizing operating systems). Namely we have to show that the contents of
say, the main memory and the disk are kept mutually consistent.
Stabilization preservation: the fact that process and scope switching occurs, and that the memory is actually shared
with other processes, will not falsify the stabilization property of each of the processes in the system.

‡ Note that the Pentium design has a similar mechanism that ensures that no NMI is executed immediately after an sti instruction.

263

DOLEV AND YAGEL

A self-stabilizing memory manager is one that ensures that every infinite execution of the system has a suffix in which
both the consistency and the stabilization preservation requirements hold.

III. Total Swapping—One Process at a Time
In the first solution, the memory management is done by means of allocating (almost) all the available memory

(RAM) to every process.
The settings for this solution are: N code portions, one for each process in the system, reside in a persistent read

only secondary storage. The soft state of each process is repeatedly saved on the disk. The operating system includes
a self-stabilizing scheduler (discussed in11), which activates processes in a round robin fashion. Whenever a process
is activated, the process has all the memory for its operation (except the portion used by the scheduler). The scheduler
actions include saving the state of the interrupted process in the disk and loading the state of the new process whenever
a process switch occurs.

The scheduler executes a process switch at fixed time intervals§. The processor state (register values) is saved in
the stack. Note that we ensure that for every processor state, stack operations will not prevent the execution of the NMI

handler and that the scheduler code will be started. This is needed since, according to the processor architecture, part
of the processor state is automatically saved to the stack (during a context switch). These automatic stack operations
carry the risk of unplanned exceptions. Thus, we ensure that whatever the stack state is, the handling procedure can
be eventually called.

The implementation uses the Pentium processor in its real (16 bit) operation mode, thus paging and protection
mechanisms that are not being used. This configuration may not be acceptable for modern desktop operating systems.
Yet, it is more common in embedded systems and also serves as a simplified model for investigating the application
of the self-stabilization paradigm to operating systems. The protected mode mechanisms might be used in satisfying
the stabilization requirement, but once the processor exits this mode, there is no guarantee. Thus, we assume the
processor’s mode is hardwired during the system execution so the mode flag is not part of the system’s (soft) state.
For now, the disk driver operations are assumed to be atomic and stateless (achieving this abstraction is left for future
research). The obvious drawback of this solution is the need to switch the whole process state in every context switch.
This might not be acceptable for all systems.

The scheduler algorithm which appears in Fig. 3 carries the memory management task. The algorithm uses in its
memory an array that is used for the process table denoted by PT. PT keeps the entire processor state (the register
values of the processor) for each running process pi , while i acts as a process pointer. Recall that N is the (fixed)
number of processes in the system. The scheduler saves the state of the running process to the process table (line 1),
and to the disk (line 2), and then increments the process counter (line 3), and loads the next process to be activated.
The loading is carried by reloading the process code from the read-only storage (line 4), process state from disk
(line 5) and the processor state from PT in memory (line 6). The correctness of the algorithm is based on the fact
that the various procedures that save and load data depend only on the value of i (that represents pi), which by itself
is bounded by the number of processes in the system. Next, we prove the algorithm correctness and then show that
the implementation which follows the algorithm fulfills the requirements.

Fig. 3 Total Swapping Algorithm.

§ Note that a clock interrupt counter may form a self-stabilizing mechanism for triggering a process switch, and that the counter
upper bound is achieved regardless of what the counter value is when counting begins.

264

DOLEV AND YAGEL

Correctness proof:
We use similar settings and proof style as in,11 so the reader may choose to read.11

Lemma 3.1. In every infinite system execution E, the program counter register contains the address of the swapping
procedure’s first instruction infinitely often. Additionally, the code is executed completely and every process is
executed infinitely often.

Proof. The processor eventually reaches an NMI state in which the NMI connector is set and the NMI counter contains
0. This means that the next operation that will be executed is the first operation of the NMI handler procedure. The
system is configured to execute the scheduler as part of the NMI handler. Since the code of the scheduler is fixed in
ROM, it remains unchanged. During the NMI handler execution, interrupts are not served. Additionally, the algorithm
contains no loops, which enables the code to be executed completely. Since the value of i is incremented in every
execution, all processes are executed infinitely often. �

Lemma 3.2. In every infinite execution E, memory consistency requirement holds.

Proof. In every context switch, the whole data portion of a process is saved to the disk and is reloaded when needed
again. The addresses used for these transfers are calculated every time and are based solely on the process number.
The state of the scheduler is actually only the process pointer value which is incremented in every execution and is
validated to be in the range 1 to N (the process table entries are, in effect, part of each process’ state). Thus, even a
corrupted value of a process pointer that may cause loading or saving the wrong data for a process, will not falsify
the execution of the scheduler. Consequently, next time the effected process is loaded, the process will have the
correct code (thereafter, a self-stabilizing process will converge). Based on Lemma 3.1, the above is true in every
infinite execution. �

Lemma 3.3. In every infinite execution E, stabilization preservation eventually holds.

Proof. Since the entire available main memory is allocated to each running process, the processes are effectively
separated from one another. Thus, the execution of one process cannot alter the state of another process. �

Corollary 3.4. The total swapping memory manager is self-stabilizing.

Details of the implementation for this solution appear in Appendix A.

IV. Fixed Partition—Multiple Residing Processes
In this section we follow a better memory utilization which allows the partitioning of memory between several

processes. This reduces the number of accesses to disk, thereby improving system performance. Still, when one
partition is free, the processes in other partitions can not use this free memory. So, although the second design does
not require the system to repeatedly transfer the entire data between memory levels, the second design still constrains
the size of the applications.

The decision concerning the set of processes that should be activated depends on external environmental inputs.
This is needed since the main advantage of this solution is rescheduling processes without costly disk operations.
However, since a priority mechanism is not used, all memory frames are occupied if N > M (M is the number of
partitions), so every context switch causes costly disk operations and the main advantage is lost. The process table
is a natural candidate for holding the additional activity status for each process. The entity which generates this
information as input to the memory manager is responsible for the correctness and stability of this value.

The setting for this solution is that the code of N programs resides in a persistent read only secondary storage. The
operating system consists of (memory hardwired) resident NMI handler and a scheduler process. The memory for
the applications is partitioned into M fixed equal length memory segments which are called frames. Thus, programs
are constrained to using the size of a frame. The operating system uses a frame table FT which describes the currently
residing process in each memory frame. In addition, there is a process table PT. The i th entry of PT consists of:

265

DOLEV AND YAGEL

(a) the last processor state of pi for uploading in case the process should be scheduled, (b) the frame number (address
in RAM) used by pi (NIL if not present), (c) refresh down counter. When the value of the counter is zero and pi is
rescheduled, the code of pi is reloaded from the CD-ROM in order to make sure it is not corrupted. (d) An active bit
that is externally defined and flags the operating system whether pi should be active or not. The remaining state of
the processes is kept on a disk. The locations on disk and CD-ROM are calculated from the process identifier i.

Upon the periodic NMI trigger, the processor execution context (register values) is saved to the stack and the
execution of the scheduler code is initiated. The scheduler saves the processor state of the interrupted process to PT ,
selects the next ready process, and then carries out the memory management actions necessary for executing this
process. The pseudo code for the algorithm appears in Fig. 5. In case the next process is not present in memory or
if there is an inconsistency between the process and the frame tables (line 1), a new frame is chosen (line 2) and
the currently residing process is saved to the disk (line 3). The refresh counter is decreased for every activation of a
process (line 4). In case this value equals zero (line 5), the new process’ code is loaded from the CD-ROM (line 6).

The algorithm Find-Frame searches the frame table for a free frame. In case all frames are used, a particular
frame is chosen for replacement. First the frame currently pointed to by this process’ entry is validated to be in range
(line 1). Next a search over FT starts from the pointed frame’s successor (line 2–5) until an empty frame or a frame
containing a non-active process is found. The search continues until the whole table is looked up. Even if due to a
fault, say an error occurs in the program counter which causes bypassing of lines 1 and 2—lines that calculate the
loop limit value, the execution will eventually bypass this loop. First, the size of the field used for storing the frame
number in PT can be bounded by M. Thus, increments of nf (line 5), must reach the loop limit value. Secondly, the
system is designed so that eventually an NMI will be triggered and the code will be re-executed from the first line.

The Swap-Process algorithm checks if there is a swapped out process due to the loading of the new one
(line 1). If this is the case, it saves to disk the state of this process (line 2) and marks its frame entry in PT as NIL

(line 3). The entries of FT and PT are updated with the new assignment (lines 4–5) and the state of the new process
is loaded to main memory (line 6). Finally, the code refresh bit is set to one (line 7), a step which will cause the main
procedure to decrement it further to zero and, thereafter, to load the new process’ code.

After the execution of the above algorithm, the scheduler continues with the swap by loading the processor state
of the new process from PT .

The correctness of the algorithm is based on the ongoing consistency checks of FT and PT . Figure 4 demonstrates
the consistency check made when assigning a frame to a process. Frame 1 is assigned to p2. Thus 1 is entered in the
2nd entry of FT. Additionally, the frame field in the entry of p2 in PT (column marked with F) is marked with the
new frame number. The arrow lines demonstrate the exclusive ownership of the selected frame for every scheduled

Fig. 4 Fixed Partition Consistency Check.

266

DOLEV AND YAGEL

Fig. 5 Fixed Partition Algorithm.

process.Additionally, the refresh field (column marked with R) shows the refresh counter which ensures the periodical
refreshing of the code for the processes. (The S column represents the processor state for each process).

Correctness proof:

Lemma 4.1. In every infinite system execution E, the program counter register contains the address of the memory
management procedure’s first instruction infinitely often. Additionally, the code is executed from the first instruction
(line 1 of Fig. 10) to the last instruction (line 42) infinitely often.

Proof. The arguments are essentially the same as in Lemma 3.1. The procedure Find-Frame (of Fig. 5) for finding
a new frame for the running process is the only one containing a loop. This loop is bounded to run no more than
M times, which happens when the whole frame table is scanned for a NIL value. If the code is executed without
validation of the limit parameter (line 1 of Find-Frame) and without the advancing of nf , the new frame pointer,
which limits the loop execution (line 2), the NMI mechanism will enforce an execution from the first line. This in
turn, will be followed by the examination of the loop conditions and will ensure correct execution. �

Lemma 4.2. In every infinite execution E, the memory consistency requirement holds.

Proof. Based on Lemma 4.1 every process will be executed infinitely often and the memory management algorithm
will be executed prior to the execution of the process. The memory manager will cause the correct code for such a
process to be loaded infinitely often from the stable storage since the refresh counter is decremented infinitely often.
Therefore, the refresh counter will reach the value zero, which will cause code reloading. The correctness of the
reloaded code is based on the direct mapping between the process pointer i and a disk location (as in Lemma 3.2).
Secondly, the target address in the main memory (frame) is validated each time to be exclusively owned by the
running process. Suppose that due to a fault, two processes pi and pj are marked in the process table PT as residing
in the same frame number f in the main memory. Whenever the scheduler activates the first process, say pi , it first
validates (in line 1 of Fig. 5) that the f entry in the frame table FT is i. If not, a new frame will be selected for pi

and both PT and FT will be updated accordingly (line 4–5 of Swap-Process). Even if the new selected frame is
still f , the frame table entry for f will now contain i. Thus, when pj will be scheduled, the memory manager will
detect that a new frame should be chosen for pj . �

267

DOLEV AND YAGEL

Note that if, due to a fault, a frame is occupied by a non-active process, this frame will be considered as an empty
frame, by theFind-Frame procedure (by the check made in line 4) and will be assigned to new requesting processes.

Lemma 4.3. Stabilization preservation eventually holds.

Proof. Each process eventually resides in the correct frame by Lemma 4.2. In addition, the applications must refer
to main memory addresses in the frame size only (the implementation relies on the segmentation mechanism of the
processor).Also, the code is fixed and does not change the content of the segment registers (note that such a restriction
can be imposed by a compiler).Additionally, the correctness of the segment register assignment is repeatedly checked
by the memory manager. Thus, the processes are effectively separated one from another, and the execution of one
process can not alter the state of another process. �

Corollary 4.4. The fixed partition memory manager is self-stabilizing.

Details of the implementation for this solution appear in Appendix B.
We remark that the fixed partition restriction of the above solution can be relaxed. Applications can be of variable

sizes. The partition of the main memory is not fixed and a record of occupied space is maintained. Whenever a
process is about to be scheduled, the record is searched for a big enough space and the application is loaded there.
To ensure fulfillment of our requirements this record must be kept consistent with the process table. Additional care,
using standard techniques, must be taken in order to address fragmentation of the main memory and in order avoid
process starvation. The next section addresses variable memory sizes by means of dynamic allocations.

V. Dynamic Allocation
Further enhancement of memory usage would be to remove the static allocation nature of the programs and to

allow them to allocate memory in a malloc/free style. Obviously, the operating system must keep track of memory
usage based on some policy. To ensure that there is no memory which, due to some fault, is marked as used, when it is
in fact unused, a leasing mechanism is suggested. In this mechanism applications must extend their lease from time
to time. This way, memory that is not in use will eventually become free (assuming no malicious Byzantine behavior
of processes). To be more precise, we would like to support a dynamic memory allocation scheme where additional
memory beyond the fixed memory required for the code and the static variables may be allocated on-demand. To
support the management of the additional memory allocations in a self-stabilizing fashion, a lease mechanism which
limits the allocation of a new memory portion for the use of a process either by time, or the number of steps the
process performed since the allocation, is used.

A memory manager process is responsible for allocating and for memory garbage collection. The dynamic memory
manager uses bookkeeping for managing the dynamic memory allocations. Allocations are tracked using a table that
holds the number of the owner process and the remaining lease period for each allocation unit. The dynamic memory
manager repeatedly checks for memory portions allocated to a process for which the lease expired, and returns every
such memory portion to the available memory pool for reallocation. The lease policy leaves the responsibility for
refreshing the leases to the programmer of the processes, and at the same time allows simple and stabilizing dynamic
memory management.We can argue that starting in an arbitrary configuration, where the dynamic memory is allocated
randomly to processes, eventually no memory will be allocated to a process which did not request memory (recently).
Moreover, assuming no malicious process behavior in every infinite execution, repeated allocation requests will be
infinitely often respected. Up until this solution, programs were totally ignorant of operating system services. Here
the operating system exposes an application programming interface for memory requests. Thus, programs should
now also deal with temporary rejections of requests while the operating system makes sure that eventually all legal
requests will be respected. The algorithms described below address the issue of dynamic allocations. Other needed
mechanisms, like the automatic refreshing of code, are taken from the previous solutions.

Figure 6 presents the algorithms which implement the interface which programs can call in order to use dynamic
memory. The MM-Alloc procedure is used for requesting memory allocation. With MM-ExtendLease a lease extension
is possible. The applications are restricted to using the allocated memory through a special segment selector register
and the procedure MM-NextSegment is the only way of accessing the different segments allocated to an application.

268

DOLEV AND YAGEL

Fig. 6 Dynamic Allocation Services.

At last, applications can release their allocations with MM-Free. The operating system contains a specialized process
called _MM-Validator¶ that validates the system’s state concerning dynamic allocation. The algorithm is presented
in Fig. 7. Additionally, we use several service procedures which are presented in Fig. 8.

Fig. 7 Dynamic Allocation Validation.

¶ The leading underscore marks a procedure internally called by the operating system

269

DOLEV AND YAGEL

Fig. 8 Dynamic Allocation Service Procedures.

Next, we describe how the algorithms work and consequently argue concerning their correctness. The MM-Alloc
algorithm inputs are the number of allocation units (segments) required by the process and the expiration period
needed. The expiration is the number of activations of the process for which the allocation will be valid. This number
is bounded (at least) by the parameter length. After this period, the validator will reclaim those segments and mark
them as free. In line 1 of the algorithm, the dynamic selector (which in the implementation is realized in a specific
processor segment register) is checked for holding an empty address. If this is not the case, the meaning is that
this process is already using dynamic memory and that the request is rejected in line 2 (for simplicity reasons we
allow only one allocation at a time). In line 3 we check whether there are sufficient allocation units for this request
through a global variable that holds this count. We assign the requested quantity to the requesting process with
the _MM-Assign procedure which simply goes over all the segments in the segment table ST and marks the needed
quantity as occupied. This procedure also updates the free segment variable (line 5), and sets the dynamic selector
value with the address of one of the allocated segments (line 9). In case insufficient amount of segments is available,
the request is queued through the procedure _MM-Enqueue which first checks that there is not already a queue entry
for this process and consequently finds an empty slot to enqueue the request. The queue size is equal to the process
number. Thus, exactly one slot for each process is reserved.

The MM-ExtendLease procedure carries out its task by validating that the requested segment is owned by the
requesting process and enlarges the lease counter value. Again, this operation is allowed assuming there is no a
malicious behavior of processes. A different approach can enable the extension just in cases when the queue is
empty, thus preventing a repeated extension of a lease by a particular process. As mentioned before, a process can
access the allocated segments through a selector which it cannot change. In order to move between allocated segments,
the process calls MM-NextSegment which looks in the segment table for all other segments and if another segment
is also occupied by the calling process, its number is returned by the selector (line 6). The MM-Free procedure carries
out its task by first updating the selector with another segment address (lines 1–2). It then checks if this selector is
the only one owned by this process, which means that the selector should be cleared too (line 5). In lines 6–8, the
released segment is checked for being owned by the process and is consequently marked as free. The global counter
of free segments is updated respectively.

270

DOLEV AND YAGEL

The validation and garbage collection algorithm (_MM-Validation) works as follows. In lines 1–2 it marks all
processes as not using dynamic memory. This will allow the initialization of the dynamic selector for processes
that are incorrectly marked as already using dynamic memory. Thus, subsequently such a process will be able to
request (and get!) allocations. In line 3, the global counter for free segments is reset. Thus, only used segments will
be counted (lines 11–12). The loop of lines 4–12 iterates over all segments in the segment table ST and decreases the
lease for each of them. In case a lease reaches zero, the segment is marked as free (line 9). Otherwise, we mark the
process as using dynamic memory (line 10). Lines 13–15 reset the dynamic selector (saved in the process table PT)
for processes that do not currently use dynamic memory. Then, we check the queue top and in case the first waiting
process can be satisfied with the current free segments, it is deleted from the queue (line 18) and assigned with the
free segments (line 19). The _MM-Dequeue procedure merely moves all the entries in the array having the queue
progress one cell towards the queue top. It also marks the last entry as free.

Correctness proof:

Lemma 5.1. In every infinite system execution E, the program counter register contains the address of the validator
procedure’s first instruction, infinitely often. Additionally, the validator code is executed entirely.

Proof. Based on Lemma 3.1 the scheduler schedules every process of the system infinitely often and specifically
the validator process. Note that the scheduler also checks that the program counter value is within the fixed limits
of the program size. The code of the validator process does not contain branches out of the the procedure limits. All
the contained loops are for-loops with advancing index which is checked each time for being inside fixed limits.
Since this index advances each time, every loop is guaranteed to reach the end criteria and have the program counter
advance towards the procedure end. �

Lemma 5.2. In every infinite system execution E, eventually no memory will be allocated to a process which did
not (recently) requested it.

Proof. The validator keeps decreasing the leases for all segments towards zero infinitely often. When reaching zero,
the segment is marked as free i.e., not allocated to any process. The only way to increase the lease value is by a
process requesting (or extending) memory. Thus, eventually every memory segment that is used by a process must
have been recently allocated (or extended) by this process, or otherwise released. �

Lemma 5.3. In every infinite system execution E, repeated allocation requests will be respected infinitely often.

Proof. The processes themselves are self-stabilizing and do not behave in an unfair way. Thus, every process that
holds dynamic memory will release it infinitely often, allowing other processes to allocate this memory. Since the
queue can contain at most one request for each process and since no process can bypass another waiting process in
the queue, each request placed in the queue will eventually be respected. �

Lemma 5.4. In every infinite execution E, the memory consistency requirement holds.

Proof. The segment table ST records the owning process for each segment. Even if the table is transiently corrupted,
based on Lemma 5.2, eventually only requesting processes will be marked as using a segment. Thus, no other process
is using this memory. The access to each segment is only via a segment register. The value of which we assume
cannot be changed by the process. This mechanism enforces the usage of this segment only by the marked process,
achieving memory consistency. �

Lemma 5.5. In every infinite execution E, stabilization preservation eventually holds.

Proof. In this case as well there is a full separation of memory accesses of processes. The static areas are separated by
means of the segment selectors from the previous solution while the dynamic areas are separated based on Lemma 5.4.
Thus, every stabilizing process will stabilize in spite of the actual sharing of memory with other processes. �

271

DOLEV AND YAGEL

Corollary 5.6. The dynamic allocation memory manager is self-stabilizing.

Note that the memory manager can protect itself from a greedy process by designing the MM-ExtendLease
procedure such that extensions are allowed only when the queue is empty. This way, when there is a pending request,
a process that holds memory will eventually loosen it. Thus, from any system state, eventually enough segments
will be freed for the top queue process and it will, thereafter, be granted with its request. The meaning of this is that
eventually every request will be respected.
Details of the implementation for this solution appear in Appendix C.

VI. Concluding Remarks
We have presented three classes of self-stabilizing memory management schemes: total swapping, fixed partition

and dynamic memory allocation.
In order to also support virtual addressing, the page tables have to be kept consistent. This will allow correct address

translation made by the MMU (memory management unit). The page tables are also usually cached in a special memory
(TLB). Consistency, therefore must also be examined for this memory structure. (To date, the Pentium’s TLB is not
accessible by the operating system).

We have run the presented system using the BOCHS2 simulator. During some of the executions we completely
changed the contents of the RAM and observed that stabilization was achieved. Namely, the processor eventually
continues to execute the correct code of the operating system.

We are convinced that self-stabilizing operating systems will be part of every critical computing system in the
near future. Prototype implementations can be found in.24

VII. Appendix
A. Total Swapping Implementation

The implementation for the total swap solution appears in Fig. 9. The code resides in ROM and is executed following
an NMI trigger. The code for saving and loading the processor state and for incrementing the process pointer is an
extension of the one presented in.11 Therefore equivalent parts are omitted here.

The code contains no loops, and all address calculations are based solely on the value of i which points to
the relevant process. Note that all values are also recalculated for every execution. Namely, every variable’s first
appearance following line 1 is associated with a command that loads a value. The only exception is the variable i,
which is verified to be in the range 1-N in lines 1–2. The rest of the code contains three stages for calculating the
required parameters for the disk routines. Lines 3–10 save the process state to disk. Immediately after these lines
the process number i is incremented and following that, lines 11–18 load the code for the next process from the
read-only stable storage, while in lines 19–26 the state of the process is loaded from disk. Afterwards, the processor
state for the process is also loaded and the process is finally activated. In more details, lines 3–4 load the register ex
with a fixed main memory address, pointing to where the running process is residing. Line 5 loads register bx with
another fixed address which is the offset to the location of the process state.

Lines 6–8 load register ax with the disk sector number (address) to write to. First, we copy the value of i to the
register. Following that we multiply it by the size of the state block for each process. This size is fixed and assumed
here to be a power of 2. Thus the multiplication is carried out by bit shifting. The design is such that the result
of multiplying this size by N (the maximum value of i) cannot exceed the register capacity. Finally, the fixed base
address on disk where all the states are kept is added. Again contains a value such that the summation will not result
in an overflow. Line 9 stores the fixed number of sectors to save to the disk in register cx. The actual writing to the
disk is performed by the procedure DiskWriteSectors (line 10) which is assumed to be atomic in this case. Lines
11–18 and 19–26 load the next process code and state from CD-ROM and disk. The arguments for correctness are
exactly like those for lines 3–10.

All addresses in the code are calculated each time. As previously mentioned, except for one variable with checked
limits, namely i, the calculations are based on constants. Thus, all the possible addresses are easily verified for
containing the correct values. This code is guaranteed to be executed infinitely often. Moreover, the instructions are
fixed, thus in the first run (say after a fault), in which the code will be run entirely from the first line, the saving and

272

DOLEV AND YAGEL

Fig. 9 Total Swapping Implementation.

loading of any process state will be correct. From that time onwards, the processes can stabilize and since they are
mutually separated by this full swapping algorithm, the whole system will eventually stabilize too.

B. Fixed Partition Implementation
The relevant code sections appear in Fig. 10. The code uses procedures for accessing the disk (e.g.,

MM_DiskLoadProcessCode). These procedures calculate arguments for the disk access routings and are omitted
here since they are analogous to the ones presented in Appendix A. Lines 1–15 implement the main memory man-
agement algorithm. Lines 16–29 implement the section of selecting a frame. Swapping is performed in lines 30–41.
In line 1, the value of the frame pointed to by the ith entry of PT (which belongs to pi) is moved to register ax. This
entry’s address is kept in register bx. However, this value is repeatedly assigned by the scheduler just before calling
the presented code. The frame number is compared first to the NIL value (line 2). If the frame number is NIL, then the
process switch can be initiated (line 3). There is also a check for whether the FT entry for this frame number contains
i (lines 6–8). This is done first by pointing register si to the FT base address (line 4) and then by adding the value
of i already kept in ax (line 5). According to the conditions above, the procedures for locating a new frame and for
swapping the residing process are executed (lines 9–10). In any case, the refresh counter of pi is decremented (line
11) again based on the correct value of bx, which is preserved during the algorithm operation. In case the refresh
counter value becomes zero (lines 12–13), the code of the process is reloaded by calling the relevant procedure (line
14). The inputs to this procedure are i, which resides in memory and is periodically checked for pointing to some
process, and the selected frame, which was saved in PT and which was validated beforehand (line 7) or was updated
by the Find-Frame procedure. Line 15 contains the return instruction from the memory manager.

Finding a new frame for the new process involves validating the current frame value of pi (line 16) and then
increasing this value modulo M (lines 17–18) in order to start the search. Yet, these operations are only based on the

273

DOLEV AND YAGEL

Fig. 10 Fixed Partition Implementation.

274

DOLEV AND YAGEL

correct assignment to register bx made by the scheduler. Lines 19–20 check if the search ended by moving across
the whole of the frame table, while lines 21–25 check in FT whether an empty frame is reached. Note that the check
concerning the occupation of a frame by a non-active frame (line 4 of the pseudo-code in Fig. 5) is omitted here.
This does not violate the correctness of the algorithm, but might cause unnecessary swapping of frames. Lines 26–28
increment the new frame counter modulo M and jump back for checking the loop end conditions, as mentioned above.
Upon exiting (line 29), the register al contains the value of a new frame for the scheduled process.

In order to actually swap out a residing process pj , we first check that the relevant new frame nf is not marked
empty. This is done in lines 30–34 in the same way as before by accessing FT . If nf is not empty, then pj ’s state
is saved to disk in line 35. The procedure that writes to disk uses the values of nf and j . In case the latter value is
corrupted in FT (j is taken from FT), the state of pj will be corrupted, since the state of the process residing in
frame nf will be saved instead of the state of pj . The process pj will be scheduled again later, will be loaded with
its correct code and will stabilize. For better bookkeeping, the frame field for pj in PT should be marked NIL (line 3
of pseudo code in Fig. 5). This is not necessary for correctness, since when rescheduling pj a contradiction between
PT and FT will be found and resolved. Thus, it was omitted from the current implementation. Lines 36–37 update
the nf entry of FT with the new residing process number i (addresses based on the values of i which are maintained
by the scheduler and register si, calculated in line 30). Line 38 updates the ith entry of PT with the correct frame
nf and consequently the state of pi is finally loaded from disk (line 39). The parameters for this procedure are only
i (maintained by the scheduler) and nf , both of which were calculated before. Line 40, implements the decrement
of the refresh code countdown, and is also based only on the bx value. Line 41 returns from the swap algorithm.

C. Dynamic Allocation Implementation
Figure 11 presents the implementation of the garbage collection algorithm of Fig. 7. Lines 1–3 enforce correct

values of segment registers (ds, es) for correct transfer of data. Lines 4–8 carry the task of zeroing the array in
memory which marks the processes that are actively using dynamic memory. This is done by loading the memory
address in registerdi, preparing a zero in registerax for copying (actually only the lower half is used), and loading the
size of the array into register cx. Line 7 assures the correct increment of the destination address pointer, by setting the
direction flag of the processor. Thus, the whole state is validated towards the actual copy performed in line 8. The rep
instruction causes the processor’s microcode to perform a loop which decrements register cx towards zero. In line 9
we assign the variable counter of free segments with zero, it will later be incremented for each segment which will be
found free. The final value will be used for deciding whether to assign the free memory to the next waiting process.

Lines 10 to 27 implement the loop which goes over the segment table and decreases the lease for each segment
and mark as free a segment the lease of which has reached zero. In line 10 register cx is loaded with the size (number
of entries) of the segment table. This value will be decremented by the loop instruction of line 27 towards zero,
and thereafter the operation will move forward. In line 11 the address of the segment table is calculated and stored
in register si. This register is used in each loop iteration for pointing towards the examined segment. In lines 12–14
we check whether the current segment is owned by some process, in case it is we continue with a lease action. In
line 15 the lease for the segment is decreased and is checked in lines 16–17 for a zero value. Note that even if, due
to some fault, a process gets an arbitrary lease value. Since the size of the lease entry in memory is bounded, and as
long as the segment is occupied, the lease is decremented infinitely often, thus the lease is guaranteed to eventually
expire. In case the lease is still valid, lines 18–21 mark the process as using dynamic memory. This is done by taking
the base address of this array and adding the value stored in register al which was assigned in line 12 to the holding
process number. In case the lease expired, the segment is marked free by assigning a special NIL value at the owner
field (line 22). Then, in lines 23–25 we check for such a NIL value (whether achieved by the lease reduction or by a
process explicitly releasing a segment), and updating the free segment counter accordingly. Lines 26–27 increment
the pointer to the segment table and the loop counter, and as long as it is not zero, jump back to line 12.

In order to complete the garbage collection operation, lines 28–37 traverse the array which is holding for each
process the information whether it uses dynamic memory. Lines 28–29 load register siwith the address of the array.
They also load register di which serves as an index to zero. Line 30 stores the size of the array in register cx. This
value will be decremented towards zero by line 37. In lines 31–32 we check for zero value in the array for each
process. In case of a zero value, we mark in the process table entry for each process the fact that dynamic memory is
not being used. Thereafter, this process will not be able to use this segment, unless allocated again. Line 33 loads the

275

DOLEV AND YAGEL

Fig. 11 Dynamic Memory Validator Implementation.

base address of the process table in memory and line 34 updates the relevant field by adding an index and an offset
to the process’ row. By advancing the indices, the next iteration is prepared in lines 35–36.

The procedure ends with an attempt to allocate the available dynamic memory to a waiting process. Line 38
points register si to the memory holding the queue. This area contains requests for memory allocation containing

276

DOLEV AND YAGEL

the requesting process id, the requested quantity and a lease period. In lines 39–41 we check whether the queue is
empty and if it is, there is no more work to be done. Lines 42–45 check whether the top request size is larger than
the available segments. If that is the case there will be no further action (until additional space is freed). Note that
line 43 validates that the request size is not larger than the whole dynamic memory size. Otherwise, an error in that
value might prevent all future allocations (this argument does not hold for the lease parameter which is designed to
take care of any possible value. This value is bounded only by the size of the containing variable). Finally in lines
46–48 we are in a state in which a new allocation can be made. The lease expiration value is prepared in register ch
and we call the two utility procedures which pop the request from the queue and assign the necessary free memory.

Figure 12 presents the implementation for the MM-Alloc procedure, called by the processes in order to obtain
dynamic memory, and also the internal _MM-Assign procedure. (The other routines e.g., MM-Free, that are

Fig. 12 Dynamic Memory Implementation.

277

DOLEV AND YAGEL

Fig. 13 Dynamic Memory Helper Procedures.

mentioned in the pseudo code, are simpler to implement and are mainly used for performance optimizations, therefore
were omitted from the current implementation version). Figure 13 completes the implementation with the queue
handling procedures. The code corresponds directly to the pseudo code algorithms presented in Section 5. Lines
1–3 of MM-Alloc insure that the requesting process does not hold any dynamic memory already any more. This is
ensured by checking the fs register which only points to a dynamic segment address for granted processes. Lines 4–6
prepare the required parameters for calling the _MM- Assign procedure (line 9) and check if substantial memory
is available. Otherwise, the enqueue procedure is called for in line 7. The assignment procedure sets up a loop (lines

278

DOLEV AND YAGEL

11–13) for traversing the memory segment list. Then, each list entry is checked for emptiness (lines 14–19). In case
an empty entry is found, it is marked as owned by the requesting process and the lease is recorded too (lines 20–21).
Line 22 decrements the global counter for free segments. Then, in lines 23–25 a check is carried out in order to see
whether enough allocations had already been made. Otherwise the loop continues through lines 26–27. Lines 28–30
update the segment register pointer with the new allocation. Since this procedure can also be called independently
by the validator process (lines 31–36), this update is carried to the process’ state in the process table too.

The _MM-Enqueue operation of Fig. 13 works as follows. In lines 1–10 the queue is searched for the requesting
process. If found, the operation stops in line 7. In lines 11–23 an empty slot is searched for placing the request.
The _MM-Deque operation is carried out by traversing the queue (lines 25–37) and by advancing each slot by one
location. In order to mark it as free, line 38 places a NIL value at the end of the queue.

References
1Brukman, O., Dolev, S., and Kolodnerm, H., “Self-Stabilizing Autonomic Recoverer for Eventual Byzantine Software”,

Proceedings of IEEE International Conference on Software-Science Technology & Engineering, (SwSTE03), Israel, 2003.
2Bochs IA-32 Emulator Project. http://bochs.sourceforge.net/
3Belady, L. A., Parmelee, R. P., and Scalzi, C. A., “The IBM History of Memory Management Technology”, IBM Journal of

Research and Development Vol. 25, No. 5, pp. 491–504, 1981.
4Baker, M., and Sullivan, M., “The Recovery Box: Using Fast Recovery to Provide High Availability in the UNIX

Environment”, Proceedings of the Summer 1992 USENIX Conference, Texas, June 1992.
5Castro, M., and Liskov, B., “Proactive Recovery in a Byzantine-Fault-Tolerant System”, Proceedings of the Fourth

Symposium on Operating Systems Design and Implementation, pp. 273–288, San Diego, CA, October 2000.
6Daley, R. C., and Dennis, J. B., “Virtual Memory, Processes, and Sharing in Multics”, Proceedings of the first ACM symposium

on Operating System Principles, pp. 12.1–12.8, January 1967, Gatlinburg, TN.
7Dolev, S., and Haviv,Y., “Self-Stabilizing Soft Error Resilient Microprocessor” 17th International Conference onArchitecture

of Computing Systems, LNCS:2981, (ARCS04), 2004. Also to appear in IEEE Transaction on computers.
8Dijkstra, E. W., “Self-Stabilizing Systems in spite of Distributed Control,” Communications of the ACM, Vol. 17, No. 11,

pp. 643–644, 1974.
9Dolev, S., Self-Stabilization, The MIT Press, Cambridge, 2000.

10Demsky, B., and Rinard, M., “Automatic Detection and Repair of Errors in Data Structures”, Technical Report MIT-LCS-
TR-875, MIT, 2002.

11Dolev, S., and Yagel, R., “Toward Self-Stabilizing Operating Systems”, Proceedings of the 15th International Conference
on Database and Expert Systems Applications, 2nd International Workshop on Self-Adaptive and Autonomic Computing Systems
(SAACS04,DEXA), pp. 684–688, Zaragoza, Spain, August 2004.

12Gray, C., and Cheriton, D., “Leases: An Efficient Fault-Tolerant Mechanism for Distributed File Cache Consistency”.
Proceedings of the 12th ACM Symposium on Operating System Principles, pp. 202–210, 1989.

13Herman, T., and Masuzawa, T., “Available stabilizing heaps”, Inf. Process. Lett. Vol. 77, pp. 2–4, 2001.
14IBM. Autonomic Computing Initiative, http://www.research.ibm.com/autonomic, 2001.
15Intel Corporation. “The IA-32 Intel Architecture Software Developer’s Manual”, http://developer.intel.com/

design/pentium4/documentation.htm, 2005.
16Kistler, M., Shivakumar, P., Alvisi, L., Burger, D., and Keckler, S., “Modeling the Effect of Technology Trends on the Soft

Error Rate of Combinational Logic”. In ICDSN, volume 72 of LNCS, pp. 216–226, 2002.
17Lampson, B. W., “How to Build a Highly Available System using Consensus”, Distributed Algorithms, LNCS 1151, 1996.
18Lamport, L., Shostak, R., and Pease, M., “The Byzantine Generals Problem”, ACM Trans. on Programming Languages and

Systems, Vol. 4, No. 3, pp. 382–401, 1982.
19Muhl, G., Jaeger, M. A., Herrmann, K., Weis, T., Fiege, L., and Ulbrich, A., “Self-Stabilizing Publish/Subscribe Systems:

Algorithms and Evaluation”. Proceedings of the 11th European Conference on Parallel Processing (Euro-Par 2005), LNCS 3648,
2005.

20The Netwide Assembler. http://nasm.sourceforge.net.
21Patterson, D., Brown, A., Broadwell, P., Candea, G., Chen, M., Cutler, J., Enriquez, P., Fox, A., Kiciman, E., Merzbacher,

M., Oppenheimer, D., Sastry, N., Tetzlaff, W., Traupman, J., and Treuhaft, N., “Recovery Oriented Computing(ROC): Motivation,
Definition, Techniques and Case Studies”, UC Berkeley Computer Science Technical Report UCB/CSD-02-1175, Berkeley, CA,
March 2002.

22Jerome H. Saltzer, “Protection and the Control of Information Sharing in Multics”, Communications of the ACM, Vol. 17
No. 7, pp. 388–402, July 1974.

279

DOLEV AND YAGEL

23Swift, M. M., Bershad, B. N., and Levy, H. M., “Improving the Reliability of Commodity Operating Systems”, Proceedings
of the 19th ACM Symposium on Operating Systems Principles - SOSP’03, Bolton Landing, NY, October 2003.

24http://www.cs.bgu.ac.il/∼yagel/sos
25http://www.selfstabilization.org
26Sun Microsystems, Inc., “Predictive Self-Healing in the Solaris™10 Operating System”, White Paper

http://www.sun.com/software/whitepapers/solaris10/self_healing.pdf, September 2004.

280

